Notice: Undefined index: language in /www/web/assay/public_html/system/startup.php on line 8
| AssayBiotechnology
Call (408) 747-0185 or Contact us

Anti-CA-125 antibody [ABT-MUC16]

Catalog No : V0010
  • Applications
    IHC
  • Host Species
    Mouse
  • Reactivity
    Human
  • Size
    100ul
  • Price
    $275.00
Details
  • Product Name
    Anti-CA-125 antibody [ABT-MUC16]
  • Catalog No
    V0010
  • Description
    Mouse monoclonal [ABT-MUC16] antibody to MUC16
  • Applications
    IHC
  • Clonality
    Monoclonal
  • Host Species
    Mouse
  • Reactivity
    Human
  • ABT Clone ID
    ABT-MUC16
  • Antigen Retrieval
    Heat-induced epitope retrieval (HIER)
  • Cell Marque/Ventana Control
    Ovarian carcinoma
  • Concentration
    0.9mg/ml
  • Dilution
    1:50-200
  • Entrez Gene ID (NCBI)
    94025
  • IHC Recommended control
    Ovarian serous carcinoma
  • IHC Target Name
    CA-125
  • Immunogen
    Synthetic peptide
  • Localization
    Membranous, Cytoplasmic
  • OMIM
    606154
  • Purification
    Immunogen affinity purified
  • Research
    Serous ovarian carcinoma, ovarian endometroid Carcinoma
  • Retrieval buffer
    TRIS-EDTA of pH8.0
  • Source/Ig Isotype
    Mouse IgG
  • Storage/Stablility
    -20°C/1 year
  • Synonyms
    Ovarian carcinoma antigen CA125, Ovarian cancer-related tumor marker CA125, CA-125
  • UniProt Gene Name
    MUC16
  • UniProtKB
    Q8WXI7
  • Volume
    2ml
Application Images
Image 1 Immunohistochemistry analysis of Formalin-fixed, paraffin-embedded Human Mesothelioma using CA 125 (MUC16) antibody.
Image 2 Immunohistochemistry analysis of Formalin-fixed, paraffin-embedded Human Mesothelioma using CA 125 (MUC16) antibody.
Image 3 Immunohistochemistry analysis of Formalin-fixed, paraffin-embedded Human Ovarian serous carcinoma using CA 125 (MUC16) antibody.
Image 4 Immunohistochemistry analysis of Formalin-fixed, paraffin-embedded Human Ovarian serous carcinoma using CA 125 (MUC16) antibody.
  • Xiang, F., Neal, P.: Efficient MCMC for temporal epidemics via parameter reduction. Comput. Stat. Data Anal.
  • Xiang, F., Neal, P.: Efficient MCMC for temporal epidemics via parameter reduction. Comput. Stat. Data Anal.
  • Xiang, F., Neal, P.: Efficient MCMC for temporal epidemics via parameter reduction. Comput. Stat. Data Anal.
  • Xiang, F., Neal, P.: Efficient MCMC for temporal epidemics via parameter reduction. Comput. Stat. Data Anal.
  • Xiang, F., Neal, P.: Efficient MCMC for temporal epidemics via parameter reduction. Comput. Stat. Data Anal.
For the process of attaching edges to nodes, it is straightforward to compute the likelihood using (2). However, because of the nature of weighted sampling without replacement, we have to, for each i, calculate the probability conditi onal on each of the Xi!Xi! permutations of the selected nodes and then aver age over all Xi!Xi! probabilities to arrive at the likelihood. As calculating the exact likelihood in this way is not computationally feasible because the factorial grows faster than the exponential function, we approximate the likelihood based on one permutation of weighted sampling without replacement instead. The contribution by the new edges brought by node i is
Get resources and offers direct to your inbox Sign up